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Résumé

En pratique, il est courant d’observer des unités influentes dans les échantillon collectées,
plus particulièrement lorsque l’on collecte de l’information sur des variables économiques
dont la distribution est très asymétrique. Le fait d’ajouter ou de retirer cette unité dite
influente a un impact significatif sur les estimateurs classiquement utilisés pour inférer sur
des paramètres de population finie. La présence d’unités influentes est d’autant plus dra-
matique que la taille de l’échantillon est petite, c’est pourquoi les méthodes d’estimation
robuste sur petits domaines se sont développées de façon importante au cours de ses
dernières années, voir par exemple Gosh et al. (2008), Sinha and Rao (2009), Dongmo
Jiongo et al. (2013), Chambers et al. (2013) and Fabrizi et al. (2014). La majorité de ces
travaux reposent sur l’utilisation de modèle mixte au niveau des unités et s’intéressent
à des variables d’intérêt continues. Dans ce cadre, quelques estimateurs robustes de
l’estimateur linéaire sans biais optimal empirique ont été proposés dans la littérature en
utilisant des méthodes de type M-quantile ou une approche basée sur le biais conditionnel.
En pratique, il est courant de s’intéresser à des variables d’intérêt binaires ou discrètes. On
a alors recours à des modèles logistiques mixtes ou des modèles de Poisson mixtes. Nous
proposons dans un premier temps un estimateur robuste dans le cas d’une approche sous
le modèle avec utilisation d’un modèle GLM, puis nous proposons une approche unifiée
pour l’estimation robuste dans les petits domaines dans le cadre des modèles GLMM.
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Abstract

Influential units occur frequently in surveys, especially in the context of business surveys
that collect economic variables whose distribution are highly skewed. A unit is said to
be influential when its inclusion or exclusion from the sample has an important impact
on the magnitude of survey statistics. Robust small area estimation has received a lot of
attention in recent years; see Gosh et al. (2008), Sinha and Rao (2009), Dongmo Jiongo
et al. (2013), Chambers et al. (2013) and Fabrizi et al. (2014), among others. So far,
researchers have mainly focused on unit level models and continuous characteristics of
interest. Several robust versions of the empirical best linear unbiased predictor based on
linear mixed models (LMM) have been proposed in the literature, including an M-quantile
regression approach and an approach based on the concept of conditional bias of a unit.
In practice, one must often face binary and count data. In this case, methods based
on LMMs are not suited. We first propose a robust estimator in a general model-based
framework with the use of generalized linear models and then we propose a unified frame-
work for robust small area estimation in the context of generalized LMMs. We construct
a general robust estimator based on the concept of conditional bias.

Keywords: robust estimation, model-based approach, small area, conditional bias.
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Introduction

Influential units are common feature of many sample surveys, especially in the context
of business surveys, those variables of interest have highly skewed distribution. A unit is
said to be influential when its inclusion or exclusion from the sample has an important
impact on the magnitude of survey statistics. In presence of influential units, the Best
Linear Unbiased Predictor is still unbiased but its variance can be very large. For contin-
uous variables with the use of a linear model, some robust estimators have already been
proposed, see Chambers (1986), Beaumont et al. (2013). In a small area context, some
robust estimators have already been proposed for unit-level model using a linear mixed
model, see Gosh et al. (2008), Sinha and Rao (2009), Dongmo Jiongo et al. (2013),
Chambers et al. (2013) and Fabrizi et al. (2014), among others. So far, researchers
have mainly focused on unit level models and continuous characteristics of interest. Sev-
eral robust versions of the empirical best linear unbiased predictor based on linear mixed
models (LMM) have been proposed in the literature, including an M-quantile regression
approach and an approach based on the concept of conditional bias of a unit. In practice,
one must often face binary and count data, which requires the use of generalized linear
mixed models. For example, for a binary outcome in a frequentist approach, one can
follow Jiang and Lahiri (2001), or Jiang (2003) who propose an empirical best predictor
for generalized linear mixed models. These estimators are still very sensitive in presence
of influential units that’s why robust estimation is required. Some robust estimators have
been proposed by Tzavidis et al. (2013) for count data and Chambers et al.(2014) for
binary data using M-quantile regression approach. In this paper we propose in the first
part an extension of the work of Beaumont et al. (2013) to a generalized linear model and
we compare empirically the efficiency of the proposed robust estimator to the Empirical
Best Predictor, and in the second part of this paper, we provide a robust estimator in a
generalized linear mixed model in the special case of small area estimation.

1 Robust estimation for GLM in finite population

1.1 Model-based approach using GLM

In model-based inference for finite population sampling (e.g., Valliant, Dorfman and Roy-
all, 2000), the y-values of the N population units are assumed to be generated from some
model. We denote by X, the known N -row matrix containing the vector of explanatory
variables xTi in its ith row. A non-informative sample s is selected from the finite popula-
tion U and is treated as fixed when making inferences. The interest lies in the prediction
of a function of the population Y -values through the sample Y -values. To fix ideas, we
assume that we are interested in predicting the random population total θ =

∑
i∈U Yi. We

consider a set of n i.i.d random variable Yi whose expected value is denoted by E(Yi) = µi
and whose variance is denoted by V ar(Yi) = σ2

i . We assume the distribution of Yi is a
member of the exponential family, so its probability density function can be written as

f(yi) = exp

(
yiγi − b(γi)

a(φ)
+ c(yi, a(φ))

)
where φ denotes the scale parameter.

The exponential family have the following well-known properties which are crucial for
estimation and inference.
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For the exponential family, we have the following results :

µi = E(yi) =
∂b(γi)

∂θi
, V (Yi) = a(φ)

∂2b(γi)

∂γ2i
.

The score function, denoted S(γ), is defined as the derivative of the log-likelihood,
S(θ) = ∂l(γ, y, φ)/∂γ. The variance of the score function is called the Fisher information
matrix, denoted by V ar(S(γ)) = I(γ).

We define the Log-likelihood as

l(γ,y,X) = log
∏
i∈U

f(yi|γ).

It can been shown that β̃, the solution of the maximum likelihood, is also the solution
of this estimating equation in matrix form on the population :∑

i∈U

Yi − µi
a(φ)

wigµ(µi)x
T
i = 0 (1)

where wi = [V (µi)gµ(µi)]
−1and gµ(µi) = ∂g(µi)/∂µi

Assuming that we use a non-information design, we assume that β̂ is the solution of
the sample estimating equation :∑

i∈S

Yi − µi
a(φ)

wigµ(µi)x
T
i = 0 (2)

We note t(yi, β) = Yi−µi
a(φ)

wigµ(µi)x
T
i and H(yi,β) = ∂t(yi,u)

∂β
(yi, β).

In this context, the empirical best predictor (EBP) of θ =
∑

i∈U Yi, can be expressed
as

θ̂EBP =
∑
i∈S

Yi +
∑
i∈U\S

h(xT
i β̂).

where h = g−1.

1.2 The conditional bias in GLM

Now we want to express the conditional bias of θ̂EBP under the model. In a model based
approach, the conditional bias attached to unit i is Bi(yi; β) = E(θ̂ − θ|s;Yi = yi). The
main problem here is that the EBP is no longer linear in the Y -values. So we use a
first-order Taylor expansion so that :

h(xTi β̂) = h(xT
i β) +

dh(u)

du
(xT

i β)xT
i (β̂ − β) +Op

(
1

n1/2

)
. (3)

Following Fuller (2011, page 65), we have :

β̂ − β =

(∑
j∈S

H(yj ,β)

)−1∑
k∈S

t(yk,β) + op

(
1

n1/2

)
. (4)
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Combining (1) and (2), we obtain :

h(xTi β̂) = h(xTi β)− dh(u)

du
(xT

i β)xT
i

(∑
j∈S

H(yj ,β)

)−1∑
k∈S

t(yk,β) +Op

(
1

n1/2

)
Now, using the following decomposition of the prediction error, we will be able to give

an approximation of the conditional bias.

θ̂EBP − θ =
∑
j∈S

Yj +
∑
j∈U\S

h(xT
j β̂)−

∑
j∈U

Yj

θ̂EBP − θ =
∑
j∈U\S

(
h(xT

j β̂)− h(xT
j β)

)
+
∑
j∈U\S

(
h(xT

j β)− Yj
)

To determine the conditional bias, we need to distinguish two cases, whether the unit i
belongs to the sample or not.

1.2.1 Conditional bias for a selected unit

We start by determining an approximation of the conditional bias for a selected unit.

BEBP
i (Ii = 1) = Em(θ̂EBP − θ|s, Yi = yi)

≈ Em(
∑
j∈S

Yj +
∑
j∈U\S

h(xT
j β)−

∑
j∈U

Yj | s, Yi = yi)

+ Em(
∑
j∈U\S

dh(u)

du
(xT

j β)xT
j

(∑
j∈S

H(yj ,β)

)−1∑
k∈S

t(yk,β) | s, Yi = yi)

≈ yi +
∑

j∈S, j 6=i

h(xT
j β) +

∑
j∈U\S

h(xT
j β)− yi −

∑
j∈U, j 6=i

h(xT
j β)

+
∑
j∈U\S

dh(u)

du
(xT

j β)xT
j

(∑
j∈S

H(yj ,β)

)−1
Em(

∑
k∈S

t(yk,β) | s, Yi = yi)

≈
∑
j∈U\S

dh(u)

du
(xT

j β)xT
j Em(

(∑
j∈S

H(yj ,β)

)−1∑
k∈S

t(yk,β) | s, Yi = yi)

In some cases, the hessian matrix still depends on the Y−random variables, so the
conditional bias can not be expressed analytically. We suggest either to use the expec-
tation of the hessian matrix for the Taylor approximation or to compute a Monte-Carlo
approximation of the conditional bias.

We will now discuss in detail the conditional bias of the Empirical Best Predictor in
three special cases, which are very useful in pratice.

1) linear case
We have h = Id and t(yi, β) = (yi − xTi β)xTi . We obtain :

BEBP
i (Ii = 1) =

∑
j∈U\S

dh(u)

du
(xT

j β)xT
j (
∑
k∈S

xkx
T
k )−1Em(

∑
j∈S

(yj − xT
j β)xj | s, Yi = yi)

=
∑
j∈U\S

xT
j (
∑
k∈S

xkx
T
k )−1xi

(
yi − xT

i β
)
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2) logistic case
We have t(yi, β) =

(
(yi − h(xTi β)

)
xi we obtain :

BEBP
i (Ii = 1) =

∑
j∈U\S

dh(u)

du
(xT

j β)xT
j (
∑
k∈S

H(xj ,β))−1Em(
∑
j∈S

(yj − h(xT
j β)xj | s, Yi = yi)

=
∑
j∈U\S

h(xT
j β)(1− h(xT

j β))xT
j

(∑
k∈S

h(xT
k β)(1− h(xT

k β))xkx
T
k

)−1
xi

(
(yi − h(xT

i β)
)

where h(xT
i β) =

exp(xT
i β)

1+exp(xT
i β)

.

For example, the conditional bias can be estimated by

B̂EBP
i (Ii = 1) =

∑
j∈U\S

h(xT
j β̂)(1− h(xT

j β̂))xT
j

(∑
k∈S

h(xT
k β̂)xkx

T
k

)−1
xi

(
(yi − h(xT

i β̂)
)

where β̂ is the regression coefficient of the sample-fitted logistic regression.

3)Poisson case

BEBP
i (Ii = 1) =

∑
j∈U\S

dh(u)

du
(xT

j β)xT
j (
∑
k∈S

H(xj ,β))−1Em(
∑
j∈S

(yj − xT
j β)xj | s, Yi = yi)

=
∑
j∈U\S

h(xT
j β)xT

j

(∑
k∈S

h(xT
k β)xkx

T
k

)−1
xi

(
(yi − F (xT

i β)
)

where h(xTi β) = exp(xTi β).

1.2.2 Conditional bias for a non-selected unit

The conditional bias of a non-sample unit can be expressed as

BEBP
i (Ii = 0) = −(yi − h(xT

i β)).

Proof:

Em(
∑
j∈S

Yj +
∑
j∈U\S

h(xT
j β)−

∑
j∈U

Yj | s, Yi = yi) = Em

 ∑
j∈U\S

h(xT
j β)− yj| s, Yi = yi


= −

(
yi − h(xT

i β)
)

The main problem is that the conditional bias of a non-sampled unit can’t be estimated
since it depends on the Y -values on the non-sample units, which are by definition not
observed.
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1.3 Construction of the robust estimator

The prediction error of the EBP can be approximately written as :

θ̂BLUP − θ ≈
∑
i∈U\S

BEBP
i (Ii = 0) +

∑
i∈S

BEBP
i (Ii = 1).

Proof.∑
i∈U\S

BEBP
i (Ii = 0) +

∑
i∈S

BEBP
i (Ii = 1)

= −
∑
i∈U\S

(
yi − h(xT

i β)
)

+
∑
i∈S

∑
j∈U\S

h(xT
j β)xT

j

(∑
k∈S

h(xT
k β)xkx

T
k

)−1
xi

(
(yi − h(xT

i β)
)

= −
∑
i∈U\S

(
yi −

(
h(xT

i β)− h(xT
i β̂)

)
− h(xT

i β̂)
)

+
∑
i∈S

∑
j∈U\S

h(xT
j β)xT

j

(∑
k∈S

h(xT
k β)xkx

T
k

)−1
xi

(
(yi − h(xT

i β)
)

= −
∑
j∈U\S

Yj +
∑
j∈U\S

h(xT
j β̂)−

∑
i∈U\S

(
h(xT

i β)− h(xT
i β̂)

)

+
∑
i∈S

∑
j∈U\S

h(xT
j β)xT

j

(∑
k∈S

h(xT
k β)xkx

T
k

)−1
xi

(
(yi − h(xT

i β)
)

= −
∑
j∈U\S

Yj +
∑
j∈U\S

h(xT
j β̂) +Op

(
1

n1/2

)

= θ̂BLUP − θ +Op

(
1

n1/2

)

Following Beaumont et al.(2013) to construct a robust version of the EBP, we express
it as :

θ̂REBP = θ̂EBP −
∑
i∈S

BEBP
i (Ii = 1) +

∑
i∈S

ψ
(
BEBP
i (Ii = 1)

)
,

where ψ(.) is the Huber function.
Now, we compute the conditional bias of the robust estimator define by

BR
i (Ii = 1) = Em(θ̂REBP − θ|s, Yi = yi).

We can prove that :

BR
i (I1i = 1) = BEBP

i (Ii = 1) + Em(n∆̄(c)|s, Yi = yi),

where

∆̄(c) =
1

n

∑
i∈S

[
ψ
(
BEBP
i (Ii = 1)

)
−BEBP

i (Ii = 1)
]
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Then a conditional unbiased estimator of the conditional bias of the robust estimator
can be expressed as

B̂R
i (I1i = 1) = B̂EBP

i (Ii = 1) +
∑
i∈S

[
ψ
(
B̂BLUP
i (Ii = 1)

)
− B̂EBP

i (Ii = 1)
]

where B̂EBP
i (Ii = 1) is a suitable estimator of BEBP

i (Ii = 1).

Let B̂min = min
(
B̂EBP
i (Ii = 1); c

)
and B̂max = max

(
B̂EBP
i (Ii = 1); c

)
, we can prove

that the value of c that minimizes max{B̂R
i (Ii = 1|i ∈ S} denoted by cminmax , leads to

the robust estimator :

θ̂REBP (cminmax) = θ̂EBP − 1

2
(B̂min + B̂max). (5)

Proof. We want to calibrate c to minimize max{B̂R
i (I1i = 1|i ∈ S}. We have to resolve

this optimization problem :

minc∈Rmaxi∈S

(
B̂EBP
i (Ii = 1) + n∆̄(c)

)
The solution of this problem is the midrange 1

2
(B̂min + B̂max) :

−n∆̄(c) =
1

2
(B̂min + B̂max)

so,

n∆̄(c) = −1

2
(B̂min + B̂max).

In some simulation studies, we are going to compare this robust estimator define by
(5) to the EBP estimator with a robust estimator β̂R given by Cantoni and Ronchetti
(2001). More precisely, we are going to compare the robust estimator to :

θ̂RCantoni =
∑
i∈S

Yi +
∑
i∈U\S

h(xT
i β̂

R
).

The robust estimator proposed by Cantoni and Ronchetti (2001) requires the deter-
mination of the tuning constant appearing in the Huber psy function. In the literature,
the authors recommend using 1.345. This tuning constant allowed the robust methods to
perform very well in a classical statistical context, but we know that in case of a finite
population this choice of the tuning constant leads to robust estimators which are too
biased and do not perform very well. This fact will be illustrated in the next simulation
study. We had in the simulation a kind of oracle estimator with the tuning constant which
minimize an estimation by Monte-Carlo of the mean square error.
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1.4 Simulation study

We are going to investigate the performance of the proposed robust estimator in terms
of relative bias and relative efficiency. We generate some population which contains
outliers and we limited our empirical study to logistic and Poisson cases. Here, P = 5000
populations are generated according to the four population models. The next 4 graphics
represent one realisation of the population under the model. The population (1) and (3)
are generated without outliers and the populations (2) and (4) are generated with 5% of
outliers.

(a) Population 1 (b) Population 2

(c) Population 3 (d) Population 4

Figure 1: Representation of the four populations
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For comparisons of estimators, we computed the Monte Carlo percent Relative Bias
(RB), the Monte Carlo relative Variance and the Monte Carlo Relative Efficiency (RE)
given by :

RBMC

(
θ̂Rp

)
=

1

P

P∑
p=1

(
θ̂Rp − θp

)
θp

× 100,

where

RVMC

(
θ̂Rp , θ̂

)
=

1
P

∑P
p=1

(
θ̂Rp − EMC

(
θ̂Rp

))2
1
P

∑P
p=1

(
θ̂p − EMC

(
θ̂p

))2 × 100,

and

REMC

(
θ̂Rp , θ̂

)
=

1
P

∑P
p=1

(
θ̂Rp − θp

)2
1
P

∑P
p=1

(
θ̂p − θp

)2 × 100.

Population Sample size θ̂RBLUP θ̂RCantoni θ̂RCantoni(copt)

1
100 0.09(92) 6.35(684) 0.06(99)
500 0.08(94) 5.9(279) 0.024(99)

2
100 −0.56(65) 5.1(203) 0.43(36)
500 −0.38(79) 4.8(776) 0.38(41)

3
100 −0.10(101) −0.52(177) 0.001(100)
500 0.01(100) 0.22(115) 0.003(100)

4
100 0.18(93) 1.03(121) 0.0103(78)
500 0.06(95) 1.5(99) 0.13(85)

Table 1: Bias and relative efficiency in brackets of the robust estimators

The results confirm our expectations regarding the behavior of the estimators : under
the models corresponding to the populations (1) and (3), the robust estimator performs as
well as the Empirical Best Predictor, which is the most efficient in these cases. Under the
models (2) and (4) with some outliers, we can notice that the proposed robust estimator
has a relative bias under 1% and there are significant improvements for the population 4
in terms of RMSE.
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2 Robust Small area estimation using GLMMs

2.1 Small area estimation based on GLMMs

We focus now on the Generalized Linear Mixed Model (GLMM) and an extension in small
area estimation. We adapt a little bit the notation introduce in the previous part, to ex-
tend the results in the case of small area estimation. Let U denote the finite population
of size N , which is partitioned into k domains or small areas U1, ..Uk of sizes N1, ...Nk ,
respectively. The domains sizes Ni are assumed to be known. Let yij be the values of y
attached to the unit j in area i and let xij be a deterministic vector of dimension p con-
taining the unit level covariates for the unit j in the area j. It is assumed that the values
of xij are known for all units in the population. A sample s of size n is selected from U
according to a non-informative sampling plan p(s). Let si = s ∩ Ui be the sample of size
ni in the area i. The aim is to use the sample values of yijand the population values xij
to infer the small area means θi = 1

Ni

∑
j∈Ui

yij. Let µ = E (y|u) be the conditional mean
vector with elements µij and Σ = V ar (y|u) be the conditional covariance matrix which
is diagonal with element σij. Let us define the N × k matrix Z = diag (1Ni

, i = 1, .., k)
where 1Ni

corresponds to a vector of ones of dimension Ni × 1.

In this paper, we assume a generalized linear mixed model for µij = E [yij|ui] of the
form

g(µij) = ηij = xTijβ + ui

where g is the link function, assumed to be known and invertible.

Then the approximation to the minimum mean square error predictor of θi = 1
Ni

∑
j∈Ui

yij
is

1

Ni

∑
j∈si

yij +
∑

j∈Ui\si

µij

 .

Since µij depends on β and ui, we need to provide an estimation of β and ui , and this
leads to a Empirical Plug-in Predictor of the i− th area mean,

θ̂EPPi =
1

Ni

∑
j∈Si

yij +
∑

j∈Ui\Si

µ̂ij


where µ̂ij = h

(
xTijβ̂ + ûi

)
, β̂ is the vector of the estimated fixed effect, ûi is the pre-

dicted area random effect for the area i and h is the inverse of the link function g.

In a small-area framework, the EPP are efficient under the correct model specifica-
tion and distributional assumptions, but they might be very sensitive to the presence of
outliers, especially when the sample size in small, as in small-area. The main objective
here is to propose new robust estimators for small-area means using the conditional bias
as measure of influence.
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2.2 Conditional bias of the EPP based on GLMMs

To provide an estimation of the conditional bias, we are going to work on a linear mixed
model which approximates the original generalized mixed model.

Following González-Manteiga et al. (2007), we consider the first order Taylor expan-
sion of g(yij) around µij,

g(yij) ' ηij + (yij − µij) g
′
(µij) , ξij. (6)

The conditional moments of the working variables ξij are given by

E (ξij|u) = ηij, V ar (ξij|u) = g
′
(µij)

2 σ2
ij

and
Cov

(
ξij, ξi′j′ |u

)
= 0, for i 6= i

′
or j 6= j

′
.

The unconditional mean of ξij is xTijβ, and the random effects ui are assumed to be
independent, normally distributed, with zero mean and constant variances equal to σu.

Now, we can approximate the original generalized mixed model (6) by the linear mixed
model

ξij = xTijβ + ui + eij, j = 1, ..., Ni, i = 1, ..., k,

where eij are independent random variables, independent of u, with zero means and
variance vij = g

′
(µij)

2 σ2
ij and

V ar (ξij) = σuZsZ
T
s + Σes , Vs

where Σes is a diagonal matrix whose elements are the variances vij of the residuals
eij.

In matrix notation, this model can be compactly rewritten as

ξi = Xiβ + ui1ni
+ ei (i = 1, ..., k) ,

where Xi = (xi1, .., xini
) is a matrix of dimension ni×p and 1ni

corresponds to a vector
of ones of dimension ni × 1. In matrix notation, the variance-covariance matrix of ξi is
Vi = σ2

u1ni
1Tni

+ Σesi where Σesi correspond to the i− th block of the matrix Σes.
We assumed in a first approach that the variance matrix Vs is known, then the best

linear unbiased estimator of β and the best linear predictor of u in the linear mixed model
are given by

β̂ =

(
k∑

h=1

XT
h V

−1
h Xh

)−1 k∑
h=1

XT
h V

−1
h ξh ûi = σ2

u1nh
V −1h

(
ξh −Xhβ̂

)
Following Dongmo Jiongo, Haziza, Duchesne (2013), we compute the conditional bias

of a unit j in the area h for the Empirical Plug-in Predictor in the domain i , but we use
a conditioning on all area-random effect instead of the random effect in the area i.

Bihj (yhj, uh; β) = Em

{
θ̂EPPi − θi|s, yhj, u

}
(7)
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First the EPP can be decomposed as

θ̂EPPi = 1
Ni

∑
j∈Si

yij +
∑

j∈Ui\Si

h
(
xTijβ̂ + ûi

)
= 1

Ni

∑
j∈Si

yij +
∑

j∈Ui\Si

[
h
(
xTijβ̂ + ûi

)
− h

(
xTijβ + ui

)]
+
∑

j∈Ui\Si

h
(
xTijβ + ui

)
' 1

Ni

∑
j∈Si

yij +
∑

j∈Ui\Si

h
(
xTijβ + ui

)
+ A


where

A =
∑

j∈Ui\Si

∂h

∂η
(ηij)

(
xTijβ̂ + ûi − xTijβ − ui

)

=
∑

j∈Ui\Si

∂h

∂η
(ηij)

xTij

[

k∑
h=1

XT
h V

−1
h Xh

]−1 k∑
h=1

XT
h V

−1
h ξh − β




+
∑

j∈Ui\Si

∂h

∂η
(ηij)

σ2
u1

T
ni
V −1i

ξi −Xi

[
k∑

h=1

XT
h V

−1
h Xh

]−1 k∑
h=1

XT
h V

−1
h ξh

− ui


= −
∑

j∈Ui\Si

∂h

∂η
(ηij)ui +

∑
j∈Ui\Si

∂h

∂η
(ηij)

xTij

[

k∑
h=1

XT
h V

−1
h Xh

]−1 k∑
h=1

XT
h V

−1
h ξh − β




+
∑

j∈Ui\Si

∂h

∂η
(ηij)

σ2
u1

T
ni
V −1i

ξi −Xi

[
k∑

h=1

XT
h V

−1
h Xh

]−1 k∑
h=1

XT
h V

−1
h ξh


and

ξh = Xhβ + uh + eh.

A = −
∑

j∈Ui\Si

∂h

∂η
(ηij)ui +

∑
j∈Ui\Si

∂h

∂η
(ηij)

xTij

[

k∑
h=1

XT
h V

−1
h Xh

]−1 k∑
h=1

XT
h V

−1
h [uh + eh]




+
∑

j∈Ui\Si

∂h

∂η
(ηij)

σ2
u1

T
ni
V −1i

ui + ei −Xi

[
k∑

h=1

XT
h V

−1
h Xh

]−1 k∑
h=1

XT
h V

−1
h [uh + eh]


= −

∑
j∈Ui\Si

∂h

∂η
(ηij)ui +B

13



Noting that
∑k

h=1X
T
h V

−1
h (uh + eh) =

∑k
h=1

∑
j∈Sh

XT
h C

(j)
h (uh + ehj) where C

(j)
h cor-

responding to the j − th column of Ch = V −1h , it can be shown that the second term B
can be expressed as :

B =
k∑

h=1

∑
j∈Sh

wihj (uh + ehj)

where

wihj =

{
k−1aiX

T
h C

(j)
h j ∈ sh

k−1aiX
T
i C

(j)
i +

[∑
j′∈Ui\Si

∂h
∂η

(
ηij′
)]
σ2
u1

T
ni
C

(j)
i j ∈ si,

and

ai =

 ∑
j∈Ui\Si

∂h

∂η
(ηij)

[
xTij − σ2

u1
T
ni
V −1i Xi

]
{
k−1

k∑
i=1

XT
i V

−1
i Xi

}−1
.

Then

θ̂EPPi − θi =
1

Ni

− ∑
j∈Ui\Si

(
yij − h

(
xTijβ + ui

)
+
∂h

∂η
(ηij)ui

)
+

k∑
h=1

∑
j∈Sh

wihj (uh + ehj)


=

1

Ni

− ∑
j∈Ui\Si

∂h

∂η
(ηij)

(
∂g

∂µ
(µij)

[
yij − h

(
xTijβ + ui

)]
+ ui

)
+

k∑
h=1

∑
j∈Sh

wihj (uh + ehj)


=

1

Ni

− ∑
j∈Ui\Si

∂h

∂η
(ηij) (eij + ui) +

k∑
h=1

∑
j∈Sh

wihj (uh + ehj)

 (8)

To determine this conditional bias, we need to distinguish four cases, whether the unit
j belongs to the domain i or not and whether the unit j is sampled or not and we have
to keep in mind that the weights wihj depends on all area random effects u. Now using
the decomposition of the EPP (8) and the definition of the conditional bias (7), we have

Bihj (yhj, uh; β) =



N−1i

(∑k
h=1

∑
j∈Sh

wihjuh −
∑

j∈Ui\Si

∂h
∂η

(ηij)ui + wiijeij

)
j ∈ si

N−1i

(∑k
h=1

∑
j∈Sh

wihjuh −
∑

j∈Ui\Si

∂h
∂η

(ηij)ui + wihjehj

)
j ∈ sh, h 6= i

N−1i

(∑k
h=1

∑
j∈Sh

wihjuh −
∑

j∈Ui\Si

∂h
∂η

(ηij)ui − ∂h
∂η

(ηij) eij

)
j ∈ Ui\si

N−1i

(∑k
h=1

∑
j∈Sh

wihjuh −
∑

j∈Ui\Si

∂h
∂η

(ηij)ui

)
j ∈ Uh\sh, h 6= i.

In these expressions of the conditional bias, we can notice that a unit outside the area
j ∈ sh may have a large influence if its weight wihj is large and its model residual ehj is
large. It is important to notice that even if non-sampled units may have large influences,
it is not possible to reduce their impact at the estimation stage, because their conditional
bias cant be estimated.

In the case of a linear mixed model, we find the same conditional bias as Dongmo
Jiongo et al. (2013) with a conditioning on all area effect.
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2.3 Construction of the robust estimator

Now, we can show that the prediction error of the EPP can be approximately written as
:

θ̂EPPi − θi ≈
k∑

h=1

∑
j∈Uh

Bihj (yhj, uh; β)− N − 1

Ni

 k∑
h=1

∑
j∈Sh

wihjuh −
∑

j∈Ui\Si

∂h

∂η
(ηij)ui

 . (9)

This expression suggests that the conditional bias can be interpreted as a contribution
to the prediction error of the area means in the domain i. Following Beaumont et al.
(2013) and Dongmo Jiongo et al. (2014), we define a robust predictor of θi as

θ̂REPPi = θi +
k∑

h=1

∑
j∈Sh

φd1,d2 {Bihj (yhj, uh; β)}

+
k∑

h=1

∑
j∈Uh\Sh

Bihj (yhj, uh; β)

−N − 1

Ni

 k∑
h=1

∑
j∈Sh

wihjuh −
∑

j∈Ui\Si

∂h

∂η
(ηij)ui

 (10)

where
φd1,d2 {Bihj (yhj, uh; β)} =N

−1
i

(
ψd1 {wiijeij}+ ψd2

{∑k
h=1

∑
j∈Sh

wihjuh −
∑

j∈Ui\Si

∂h
∂η

(ηij)ui

})
j ∈ si

N−1i

(
ψd1 {wihjehj}+ ψd2

{∑k
h=1

∑
j∈Sh

wihjuh −
∑

j∈Ui\Si

∂h
∂η

(ηij)ui

})
j ∈ sh, h 6= i

Using the expression (9) and (10) and choosing d2 = +∞, we have

θ̂EPP = θ̂EPPi −
k∑

h=1

∑
j∈Sh

Bihj (yhj, uh; β) +
k∑

h=1

∑
j∈Sh

φd1,+∞ {Bihj (yhj, uh; β)}

= θ̂EPPi −
k∑

h=1

∑
j∈Sh

B
′

ihj (yhj, uh; β) +
k∑

h=1

∑
j∈Sh

φd1,+∞

{
B

′

ihj (yhj, uh; β)
}

where

B
′

ihj (yhj, uh; β) =

{
N−1i ψd1 {wiijeij} j ∈ si
N−1i ψd1 {wihjehj} j ∈ sh, h 6= i

if the influence of all the sample units is small we have

φd1,+∞

{
B

′

ihj (yhj, uh; β)
}

= B
′

ihj (yhj, uh; β) ,∀j ∈ S,

so the summation of the second and third term is close to zero, therefore the robust esti-
mator is close to the non-robust one, i.e the EPP.
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We have to determine the tuning constant d1 which adjust the trade-off between bias
and variance. Since, it is not possible to provide an analytic expression for the mean
square error of the robust estimator, we choose the constant d1 which verify a minmax
criterion. We can use the same proof as in part 1 to show that the robust estimator
construct with the minmax constant can be written as

θ̂EPP = θ̂EPPi − 1

2

(
B̂

′

max + B̂
′

min

)
where B̂

′
max = maxj∈S

{
B̂

′

ihj (yhj, uh; β)
}

and B̂
′
min = minj∈S

{
B̂

′

ihj (yhj, uh; β)
}

, where

B̂
′

ihj (yhj, uh; β) is a suitable estimator of B
′

ihj (yhj, uh; β).

The conditional biases B
′

ihj (yhj, uh; β) are unknown since they depend on the model
parameters (β, Σes), the random small-area effects u, and the variance of the small area
effects σ2

u. The estimation of these parameters can be carried out by using a combination
of Maximum Penalized Quasi-Likelihood (MPQL) for the estimation of β and u, and
REML for the estimation of the variance components (Saei and Chambers, 2003).

3 Final remarks

In this paper, we proposed an extension of Beaumont et al. (2013) to a model-based
approach with the use of GLM, and we show empirically that the robust estimator perform
very well in terms of MSE. We also focus on small area prediction for binary and count
data, since it is an challenging problem. We proposed an extension of the results of
Dongmo Jiongo et al. (2013) involving the conditional bias to binary and count data.
The last part of the work, not presented here, is to test at least empirically the efficiency
of the robust estimator compared to the non robust one and the M-quantile estimator
proposed by Tzavidis et al. (2013) for count data and Chambers et al. (2014) for binary
data. The estimation of the MSE of the proposed robust estimator is still an area of
current research.
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